Finite iterative algorithms for the generalized reflexive and anti-reflexive solutions of the linear matrix equation AXB = C

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$‎. ‎An $ntimes n$‎ ‎complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$)‎. ‎In this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...

متن کامل

‎finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

a matrix $pintextmd{c}^{ntimes n}$ is called a generalized reflection matrix if $p^{h}=p$ and $p^{2}=i$‎. ‎an $ntimes n$‎ ‎complex matrix $a$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $p$ if $a=pap$ ($a=-pap$)‎. ‎in this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $axb=c$ and $dxe=f$ over reflexiv...

متن کامل

Generalized reflexive solutions of the matrix equation AXB=D and an associated optimal approximation problem

Generalized reflexive solutions of the matrix equation AXB = D and an associated optimal approximation problem a b s t r a c t

متن کامل

Iterative algorithm for the generalized ‎$‎(P‎,‎Q)‎$‎-reflexive solution of a‎ ‎quaternion matrix equation with ‎$‎j‎$‎-conjugate of the unknowns

In the present paper‎, ‎we propose an iterative algorithm for‎ ‎solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix‎ ‎equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} ‎{underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$‎. ‎By this iterative algorithm‎, ‎the solvability of the problem can be determined automatically‎. ‎When the‎ ‎matrix equation is consistent over...

متن کامل

Diagonal and Monomial Solutions of the Matrix Equation AXB=C

In this article, we consider the matrix equation $AXB=C$, where A, B, C are given matrices and give new necessary and sufficient conditions for the existence of the diagonal solutions and monomial solutions to this equation. We also present a general form of such solutions. Moreover, we consider the least squares problem $min_X |C-AXB |_F$ where $X$ is a diagonal or monomial matrix. The explici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2017

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1707151w